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Abstract. Calculating, by a Monte Carlo technique, the conductivities of small, two- 
dimensional, square, bond-percolation networks (4 x 4 to 50 x SO) at a limited number of 
probability values, from the critical region to full conductivity, we have been able to show, 
by an original interpolation technique, that in the critical region the conductivity function 
does indeed obey a universal, Fisher-type, finite-size scaling function. We further show 
that this technique permits us to deduce values of the critical exponents for both the 
conductivity and the correlation length, even from calculations on relatively small networks. 

1. Introduction 

The study of size effects in percolation problems is of interest for two reasons. 
(1) Such systems are met in nature and show smeared properties in the critical 

region, in contrast with systems with an infinite number of elements where the critical 
behaviour is clearly evident. Generally, the softening of the critical behaviour in the 
former case results from the expected statistical fluctuations in finite systems. 

(2) By extrapolating data obtained from small systems, we would hope to get 
accurate predictions for larger ones. Different versions of size renormalisation have 
been developed (Roussenq et af 1975, Sur etaf  1976, Derrida and Vannimenus 1980). 

It is particularly important to establish this technique for the conductance of 
resistive percolation networks, since calculation times for the solution of even moder- 
ate-size networks can be quite long, even where large, fast computers are available. 

We have chosen to treat the problem of two-dimensional, square, bond-percolation 
lattices with free boundaries-defining as a lattice of size ‘N x N’  one having ( N  - 1) 
rows of N nodes each, and consequently N rows of N vertical bonds each and (N - 1)2 
horizontal bonds, the vertical rows meeting at common test nodes at the top and 
bottom. (Figure 1 provides an illustration for N = 3.) If we assume bonds of unit 
resistance, the resulting lattices have, when all bonds are present, unit conductance 
(independent of N ) .  Networks based on this lattice have the property of being 
self-dual; this latter property leads to the exact critical percolation probability p c  = f. 

We shall describe below: in 92,  the results of our Monte Carlo conductance 
calculations for lattices 4 x 4 to 50 x 50; the general analytic properties of the conduct- 
ance function G N ( p )  of such a lattice (§ 3); the predictions of Fisher’s finite-size scaling 
theory (0 4); the original interpolation scheme which we have developed, and which 
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Figure 1. Schematic diagram of the conductance lattice for N = 3. The connection of 
bonds to nodes A and B is equivalent to connecting the topmost and lowest rows of 
vertical bonds to limiting plane electrodes. It is readily verified, that for an ideal lattice 
( p  = l), and bonds of unit resistance, the overall conductance is unity. In a typical given 
realisation ( p  < l), some of the bonds will be missing. 

permits us to infer the entire conductance function from Monte Carlo calculations of 
the conductivity at a limited set of probability values (0 5 ) ;  and, in § 6 ,  the resultant 
calculation of the critical exponents, t and v, respectively for the conductivity and 
correlation length. 

2. Monte Carlo conductance calculations 

We calculate, using the method described in an earlier paper (Blanc et a1 1980), the 
resistance of a random, bond lattice. 

For a given N x N lattice, defined as above, setting an a priori probability p ,  we 
generate the vertical and horizontal bonds of the lattice by comparing p with random 
numbers between 0 and 1 generated by a new, efficient algorithm (Kirkpatrick and 
Stoll 1981). We first simplify the network, by means of another algorithm which 
eliminates all tree-like ‘dead’ arms, so that the resulting network, all the nodes of 
which are connected by active bonds of unit resistance, is made up of the conductive 
‘backbone’ and possibly also isolated loops. The top row of active vertical bonds is 
assumed to be connected to a source of unit potential (node A in figure l ) ,  and the 
lowest row of vertical bonds is grounded (at B). Because of the possible existence of 
floating loops, which our search algorithm does not distinguish from portions of the 
backbone, we have also found it convenient to tie to each node of the network a 
resistance of lo6 a, connecting that node to a separate 0.5 V source. The existence 
of these additional high resistances does not affect, to the accuracy of our solution, 
the conductance of our network, but serves to stabilise the potentials of any floating 
loops. 



Conductivity of finite-size percolation networks 2525 

We then proceed to solve, for each active node, Kirchhoff’s equations Vi = 
Xi giiV,/Zj gi j  where the gii represent the conductances lying the neighbouring potentials 

to the node i. Since, for any but the smallest values of N, the number of active 
nodes of. our network leads to a number of equations unmanageable for simultaneous 
solution, we solve the system by an iterative over-relaxation method (Webman et a1 
1975). After each iteration, we calculate the conductance by summing the dissipated 
energy: 

G=C(V,-V, )*  (for all active nodes and values i < j ) .  (1) 
i < j  

This has the advantage of second-order accuracy for first-order errors in the Vi. We 
terminate the iteration when the difference between successive conductance calcula- 
tions is less than 4 x 

To obtain the conductance function G N ( p ) ,  we have averaged, for given p ,  the 
conductances of a very large number of realisations of lattices, ranging from 20000 
for N = 4 to 96 for N = 50. Data were obtained for N = 4, 5 ,  6 ,  7 ,  8 ,  10, 15, 20, 30, 
40, 50 and for 22 values of p-of these latter, ten were chosen to be clustered around 
p ,  (the higher N, the tighter the clustering), and the rest nearly evenly spaced to span 
the range remaining to p = 1 .  Figure 2 displays a typical set of such curves. 

It is perhaps also worth mentioning that, because of the self-dual nature of the 
lattices, at p = p c  conducting and non-conducting configurations occur with equal 
probability. More generally, we obtain, for each value of p and N, a histogram for 
the conductances of individual realisations, whose mean value is GN(p) .  The histogram 
contains a S function at zero conductance, corresponding to all non-conducting 
configurations, and a smeared distribution of the non-zero conductances, which 
becomes narrower and closer to zero (at p = p , )  as N increases. We may expect 
finite-size scaling to apply to this distribution also. 

3. Analytical properties of the conductance function GN(p) 

The conductance function G N ( p )  is a polynomial of order k (  = N 2  + ( N  - l)’)-k being 
the total number of bonds in the N x N lattice-with GN ( p )  = Z;=O Cjp’( 1 - p)k - ’  where 
the coefficient Ci corresponds to the sum of the conductances of all possible configur- 
ations of the N x N lattice having j bonds present and ( k  - j )  broken bonds. Accord- 
ingly, it is easily verified that all Cj<N = 0 and that the first term of the polynomial is 
l p N ( l  -p lk-?  It is, of course, relatively trivial to calculate 

G i ( p ) = p  ( 2 )  

(3) 

and 
11 3 2 17 4 Gz(P)=1P2q3+TP 4 + 3 P  4 + l P 5  

(where q = 1 - p ) ,  since the N = 2 lattice involves only 25 configurations. We have 

t In the case of p near p E  where a significant fraction of realised lattices are not conducting, we have found 
that the convergence to zero tends to be very slow. Since, both from our own observations and from the 
extensive percolation literature, it is apparent that the conductive backbone is then always characterised 
by multiple loops joined by a few critical bonds, we have found that the calculations could be greatly 
speeded up by recognising that any lattice for which the conductance drops below that of a ‘monofilament’ 
resistor three times the length of the lattice is, to an extremely high probability, non-conducting. 
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Figure 2. Monte Carlo results of G N ( p )  against p for four different values of N. The full 
curves are calculated by means of the interpolation functions described in the text. Note 
that, for clarity between the different data, the vertical scales have been displaced for the 
three upper curves, with the location of the p axis indicated in each case. 

also calculated, for purposes of testing our interpolation techniques, G3( p ) ,  which 
already involves 213 configurations: 

G3(p) = lp3q'*+ 12p4q9+63.333 33p5q8+ 189.109 09p6q7+348.208 Olp7q6 

+408.725 81p8q5+318.414 23p9q4+ 166.027 66p'Oq3 

+56.130 16p'1q2+11.181 59p1'q+ lp13. (4) 
Even with computer assistance, however, G4(p) with 225 variations is virtually beyond 
the limit of reasonable attempts. 

Aside from the previously stated fact that G N ( ~ )  = 1, it is also possible to show, 
by an effective-medium approach, that for large lattices the slope at p = 1 equals 2. 
This slope has been previously (Ottavi et al 1978) called the 'vulnerability' of the 
lattice, and found to be closely related to the coordination number of various lattices. 
By considering all configurations with one missing bond, we have calculated the 
exact vulnerabilities for all lattices 2 x 2 to 10 x 10, which we tabulate below. 
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Table 1. Exact vulnerabilities of small square lattices. 

N a ( N )  N a ( N )  N a ( N )  

2 1.600 000 00 5 1,963 777 90 8 2.01233256 
3 1.818 414 32 6 1.989 450 31 9 2.01733610 
4 1.915 659 18 7 2.003 904 06 10 2.020 303 62 

We have found that the slopes, just tabulated above, are extremely well approximated 
by the function 

a l ( N )  =2-0.701807/N +5.56973/N2-6.19944/N3+2.13434/N4. ( 5 )  

Given the further fact that the 10 x 10 lattice consists already of 181 bonds, it seems 
a most reasonable generalisation to assume that the above equation will continue to 
be a good representation of the slope for all N > 10. 

In summary we see, as illustrated in figures 2 and 3, that the function G N ( p )  starts 
off unity at p = 1, descends linearly with slope two, goes through an inflection and 
then becomes very small at p = p c ,  but that, for all finite N, the transition is smeared 

P 

Figure 3. Summary of the experimental results for G N ( p ) .  The intermittent curves 
(unequal dashes) are exact calculations for N = 2, 3. The full curves are interpolation 
functions calculated from numerical Monte Carlo data as shown in figure 2, for N = 4, 6, 
10, 20, 50. The broken curve represents an extrapolation for N + CO, discussed in the 
text, obtained at constant p from the family of interpolation curves. The present paper 
is principally concerned with the smearing of the critical behaviour around the exact 
threshold p,=f, and to a lesser extent with the ‘vulnerability’ (slope at p = 1) of the 
conductance functions G N  ( p ) .  
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out and there exists a small, finite probability that conductivity will occur even for 
p < p c .  We shall keep these general properties in mind in the development of our 
interpolation method below. 

4. Finite-size scaling on GN ( p )  

The smearing observed on the set of numerical curves (figure 1) is a general characteris- 
tic of the critical transitions in finite systems. While in the true asymptotic limit, critical 
properties display, at the critical point, non-analytic behaviour with critical exponents, 
for finite systems there exists a limited region around the critical point where the 
discontinuity is ‘smeared’. This softening can be understood in terms of the divergence 
of a characteristic length, the ‘correlation length’, 6, as the critical point is approached- 
[ (p )cc ls l - ”  (where E = p - p c ) .  In the case of the percolation problem, this length is 
associated with the average size of clusters. So long as the correlation length, 5, is 
small with respect to the linear dimensions of a finite system, the system will display 
the expected critical behaviour. However, as the critical point is approached, 6 
eventually becomes comparable to the size of the system and rounding occurs, because 
a finite fraction of configurations remains conducting for all p .  The operative universal 
variable thus becomes the ratio of the linear dimension to the correlation length, in 
our case N/[cc  NE We can therefore write, in the spirit of finite-size scaling (Fisher 
1971, Roussenq et aE 1975, Sur et a1 1976), the conductance variation 

GN(p) = N - ” X ( z )  (6) 
where the homogeneous function X ( z )  of the modified universal variable z =  EN^'" 
describes the rounding effect near p c  for finite N. In the thermodynamic limit 

G d  p )  E ‘. (7) 
We must consequently have a behaviour X(z)oCz‘ for z+m, and therefore the 
exponent x of the prefactor of equation (6) must be such as to ensure independence 
of N, for large N, i.e. 

x = t / v .  (8) 
Recalling, in addition, that GN(p) is an analytic function of p for all finite N, we 

conclude that in the ‘smeared’ region we must have a Taylor series development 

X ( z )  = X ( 0 ) + z X ” O ) + z 2 X ” ( 0 ) / 2 + .  . . (9) 

GN(p) =N-xX(0)+N-”tY~X’(O)+N-”’2Y~2X’’(0)/2+. . . (10) 

i.e. 

where we have defined for notational convenience y = l / v .  
We therefore come to the new conclusion that the variation with N of the 

coefficients in the development of GN(p)  in powers of E ,  around p = p c  should permit 
us to obtain both critical exponents t and v, from an overdetermined problem. 

In order to do this, however, we must be able to obtain for each value of N a 
sufficiently accurate approximation for GN( p ) ,  so that we can compute not only GN(p,),  
but equally GL(pc) and GXpc).  The interpolation technique which we will presently 
describe allows us to do just that, from the various values of G N ( p )  calculated by the 
Monte Carlo method. 
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5. The interpolation method 

After observing the general features disclosed by the conductance points displayed 
in figure 1, we have somewhat arbitrarily chosen to divide the curves into three regions: 
(i) p ~ 0 . 5 7 ,  (ii) 0.57 < p  s 0.84, and (iii) 0.84<p G 1; the point p = 0.57 was chosen 
as being outside the critical region around p c ,  while the point p = 0.84 was selected 
so as to be in the region where the curves G N ( ~ )  begin to display some curvature. 
We then do a simultaneous least-squares fit of the entire set of 22 data points to a 
cubic arc for region (i), another cubic arc for region (ii) and a parabolic arc for region 
(iii). The least-squares fit is carried out, however, under the constraints: (a) that at 
the boundary between regions (i) and (ii), the interpolating function, its first and 
second derivatives should be continuous, (b) that at the boundary between regions 
(ii) and (iii), the function and its first derivative should be continuous, and (c) that at 
p = 1, the parabolic arc should not only pass through the correct value of unity but 
that it should equally have the proper slope, predicted from equation ( 5 ) .  These 
various constraints have the effect not only of reducing the number of free parameters 
to four, but also of producing an interpolating function with a second derivative which 
is a continuous function throughout regions (i) and (ii). We have placed this particular 
condition because we wish to be able to ascribe some significance to the curvature of 
the interpolation function at p = p c .  

We have tested the interpolation method by carrying out this procedure on values 
calculated from the exact, known functions G2(p) and G 3 ( p )  at the 22 values of p 
used for Monte Carlo calculations for lattices N = 4 to 10. Upon recalculating the 
conductance values from the interpolation function, we find that for both N = 2 and 
N = 3 they never deviate from the exact values by more than 6 x and typically 
2 x and that, at p c ,  the function values agree to 0.05'/0, the first derivatives to 
0.3%, and the second derivatives to 3.3% or better. 

When we recall that G3(p)  is in fact a polynomial of order 13 in p, this kind of 
agreement is indeed satisfying. 

6. Critical exponents and other results 

The continuous curves through the Monte Carlo points of figure 2 are in each case 
computed from the corresponding interpolation function. It should be noted that in 
all cases they pass well within the corresponding statistical error bars. 

We further display, in figure 3, a more complete set of interpolation curves for 
G N ( p ) .  We show, in the same figure, the exact functions G2(p)  and G & I )  (from 
equations (3) and (4)), while the broken line represents an extrapolation, discussed 
below, for N+oo in an attempt to visualise the curve G,(p) ,  and to complete the 
family of curves. 

Finally, in figure 4, we present a log-log plot, against lattice size N, of the coefficients 

A ( N ) =  GN(pc), Ai ( N )  = GkApC), A2(N)  = G k h ) ,  (1 1) 
as deduced from our interpolation functions for each value of N. In equation (lo), 
we have predicted that these coefficients should vary respectively as N-", N - x C y  , and 
N-x+2y .  Consequently, in figure 4, the slopes of the three resulting straight lines must 
be fitted by these two parameters, x and y. We have found values of these parameters 
which best fit our data, in a weighted least-squares sense. (The values of A 2 ( N )  are 
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Figure 4. Logarithmic plot (at pe  = i) of the value of the conductance GN( p c ) ,  and of its 
first two derivatives with respect to p, against lattice size N. The two critical exponents 
t = 1.22i0.08 and Y = 1.35k0.06 (for the conductivity and correlation length) are 
obtained, in an overdetermined way, from a weighted, linear, least-squares fit of the 
functions, illustrated by the straight lines through the data. The open circles represent 
less reliable preliminary data, shown for comparison purposes only. # , A,(N) = G X p J ;  
*, A I ( W = G L ( P J ;  + , A ( N ) = G N ( P J .  

given only t the weights of the A ( N )  and A l ( N ) ,  in recognition of the much greater 
uncertainty associated with the curvature values.) We have also omitted in this fit all 
values for the smaller lattices N = 2, 3, 4, which are, however, shown in the figure. 
The straight lines appearing on figure 4 are the results of our fit, corresponding to 

x = t / u  = 0.91 * 0.03, y = l / u  = 0.74~k0.03, 

whence 

t = 1.22 * 0.08, U = 1.35 * 0.06. 

We can compare these with the current preferred values (Stinchcombe and Watson 
1976, Den Nijs 1979, Reynolds et a1 1980, Straley 1980) 

t =  1.13*0.09 and v = 1.34k0.02. 

The open circles in figure 4 represent results from some preliminary Monte Carlo 
calculations performed with poorer statistics and less stringent convergence criteria 
than those discussed in § 2 above. We present them to indicate that even under those 
conditions, one could have inferred a reasonable value of x = t /u ,  and at the same 
time to emphasise the need for stringent convergence in obtaining lattice-conductance 
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solutions. (The values are larger than the present ones because of the poor convergence 
to GN = 0 of some of the realisations near pc.)  

It is also very interesting to observe how close the results on lattices with N as 
low as 2, 3 and 4 lie to the best-fit lines, particularly for the function A ( N )  and the 
first derivative A,@’) .  The deviation, at low N, of the second derivative A * ( N )  is 
not unexpected, since there is a greater contribution to the curvature of G N ( P )  from 
configurations with many broken bonds to which the smaller lattices are more sensitive. 

To obtain an idea of the shape of Gm(p) in the limit N +a, we have used as an 
extrapolation scheme, at each of about 100 values of pi  in the range O S < p < l ,  a 
least-squares fit for the values of GN(pi )  obtained, at constant p, from our interpolation 
functions to the function ai + bi/N”. This gives the correct result Goo(pc) = 0 in accord- 
ance with equation (lo), as well as G,(1) = 1. That extrapolation, plotted as the 
broken curve in figure 3, gives approximately the correct shape for the conductivity of 
infinite systems. A power-law fit near pc  = 0.5 gives a crude value of exponent 1.5, 
not inconsistent with our results. Let us emphasise, however, that our extrapolation 
scheme is only an empirical and illustrative one for p above pc. 

In conclusion, we have established, as surmised above, that good values of the 
critical exponents t and Y can be obtained using our method even on relatively small 
lattices. We plan to report at a later date on similar results in the three-dimensional 
case, as well as on lattices with anisotropic percolation. 
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